Evolution Education Resource: Metaconceptual Learning Activities for Promoting Metacognitive Awareness and Self-Regulation of Intuitive Thinking in Evolution Education

Students’ intuitive thinking (e.g., teleological, respectively, goal-directed thinking) often proves helpful in different contexts, such as everyday life, but can be an obstacle to learning about evolution (Figure 1). Thus, enhancing students’ evolutionary understanding is often challenging, with intuitive conceptions of evolution still existing after instruction. Consequently, it is necessary to explicitly address students’ intuitive conceptions to support students in developing an appropriate understanding of evolution. Currently, available learning materials that teachers can use in evolution teaching are numerous. However, they almost exclusively focus on subject-specific knowledge, and if they address students’ conceptions, they do so only marginally or attempt to change/eliminate students’ conceptions. However, eliminating intuitive conceptions is neither possible nor preferable because they are resistant to change and valuable in many contexts other than evolution (González Galli et al., 2020; Perez et al., 2022; Shtulman & Harrington, 2016). No appropriate materials are published at the moment that respect the context-dependency of intuitive conceptions and enable students to regulate their conceptions in a context-dependent manner, i.e., using them in contexts where they are productive but inhibiting them in contexts where they are hindering.

Thus, we developed two novel metaconceptual learning activities focusing on intuitive conceptions and their context-dependency that biology teachers can implement at the upper secondary level. The learning goal is to make students metacognitively aware of their intuitive conceptions and enable them to self-regulate these in the context of evolution, thereby enhancing conceptual understanding. According to national standards, students should learn to construct sound scientific explanations of evolutionary changes, e.g., by referring to scientific concepts such as variation, heritability, and differential survival/reproduction (Gregory, 2009; NGSS, 2013). However, this goal can only be reached when students learn to self-regulate their intuitive conceptions.

Two metaconceptual activities will be outlined here: (a) a self-assessment of one’s conceptions and (b) instruction on the context-dependency of conceptions (for the learning materials, see appendix). Regarding (a), students receive a list of seven scientific concepts of natural selection (e.g., variation, inheritance, differential survival/reproduction) and a list of three intuitive ways of thinking (teleology [i.e., goal-directed, purposeful understanding of evolution], anthropomorphism [understanding that species modify their characteristic intentionally...
during evolution], and essentialism [understanding that species change as a whole from generation to generation because of neglecting or underestimating intraspecific variation]). Exemplary phrases and key terms are provided in the lists for each scientific and intuitive conception to support the self-assessment. The students are asked to examine their own previously given explanation of evolutionary changes by color-coding in their explanation and checking off in the lists intuitive and scientific conceptions used (Figure 2). This way, students become metacognitively aware of their conceptions. To become able to self-regulate their conceptions, students receive instruction on the context dependency of conceptions in activity (b). For example, they receive information on why intuitive thinking (e.g., teleology) may be appropriate in everyday life but not in the context of evolution and are asked to discuss this context-dependency of teleological thinking by contrasting statements in both contexts. Further context-differentiations relate to different scientific contexts and different social contexts. Individual tasks, activities with a partner, and class discussions alternate, making the activities diversified and interactive.

![Figure 1. In the self-assessment activity, students self-assess their prior evolutionary explanations by color-coding intuitive and scientific conceptions used.](image)

The metaconceptual activities have been developed with feedback from students and teachers and have been refined repeatedly based on empirical findings from our research group (Bannefeld, 2018; Hartelt & Martens, 2024a; Schilling, 2020; van Stappen, 2020). In particular, we have tested the comprehensibility, age-appropriateness, and effectiveness of the two activities in think-aloud interviews and a randomized experimental intervention study with \(N = 730 \) students (approved by the institutional review board of the local university, number 23/2021). In the experimental intervention study with a pre-post-follow-up-test-design (Hartelt & Martens, 2024a), both metaconceptual activities ((a) and (b)) have been systematically varied in a 2x2 factorial design. This design allowed measuring the individual and combined effects of the two metaconceptual activities on students’ conceptual understanding of evolution. Students who participated in one or both metaconceptual activities used less intuitive conceptions and more scientific conceptions afterward to explain evolutionary changes than students who received only instruction on subject-specific knowledge with no focus on their intuitive conceptions. We also found positive long-term effects of the metaconceptual activities on students’ conceptual understanding in the follow-up test (for more detailed analyses, e.g., on the individual effects of both metaconceptual activities on students’ conceptual understanding, metacognition, and self-efficacy, see Hartelt & Martens, 2024a, b).
For the learning materials of the metaconceptual activities, please contact Tim Hartelt (hartelt[at]uni-kassel.de).

References

